ni=| software modularity group

Gregor Kiczales

University of British Columbia
Xerox PARC

a few previous “big waves”

* procedural programming
& block structure

 static typing
* object-orientation

and some of their key properties
 intuitive
 efficient

« profound and incremental
- paradigms

 school of: organization design, separation of
concerns, abstraction, information hiding...

2 UBC software modularity group

object-orientation

 model world as objects

» classify objects into inheritance hierarchy

a<nalysis design

programmi}ng

objects all the way through

« trace-ability
« separation of concerns

— within each level
— across the levels

Figure %l FigureElement
A
|
Point F Line
2

getX(): int getX(): int
getY(): int getY(): int
setX(int) setX(int)
setY(int) setY(int)

a simple figure editor

UBC software modularity group

blocks, layers & now hierarchies have limits

classic sources of complexity in embedded systems

« synchronization, access control, accounting,
scheduling, performance optimization, power
management, logging, context dependence...

« crosscut blocks, layers, and hierarchies

N/

tracking when objects move in the
simple figure editor

FFS module

v
\vm_fault ‘
. - \ = |\
Figure %l FigureElement N poser ipaes
1 “\4
I
Point k Line A,V“"Apag!(—getp e
VM module \ \

2 \
getX(): int getX(): int \
getY(): int getY(): int A etNes
setX(int) setX(int)) E
setY(int) setY(int) \

2 prefetching modes in Free BSD

UBC software modularity group

aspects

« aspects are crosscutting units

analysis design programming
< >
aspects (& objects & procedures) all the way through

Figure ﬁ FigureElement

when elements Fomt k| i aspect MoveTracking {

move etX(): int 2 otX(): int
| Cenvi i Sy ... 10 loc ... }

N—
S
detect & optimize _\\ aspect SeqPrefetching {
sequential access AN ... 10 loc ... }
— N
5 UBC software modularity group

big steps in software development

* not just technology
— languages, tools

* not just work practice
— methods, books, management

» synergistic combination of both
— intuitive, efficient, profound, incremental
— procedural programming and related practices
— OO programming and related practices

— <fill this space> ideas that bridge the
whole process

6 UBC software modularity group

	a few previous “big waves”
	object-orientation
	blocks, layers & now hierarchies have limits
	aspects
	big steps in software development

